2,535 research outputs found

    Sparse graphical models for cancer signalling

    Get PDF
    Protein signalling networks play a key role in cellular function, and their dysregulation is central to many diseases, including cancer. Recent advances in biochemical technology have begun to allow high-throughput, data-driven studies of signalling. In this thesis, we investigate multivariate statistical methods, rooted in sparse graphical models, aimed at probing questions in cancer signalling. First, we propose a Bayesian variable selection method for identifying subsets of proteins that jointly in uence an output of interest, such as drug response. Ancillary biological information is incorporated into inference using informative prior distributions. Prior information is selected and weighted in an automated manner using an empirical Bayes formulation. We present examples of informative pathway and network-based priors, and illustrate the proposed method on both synthetic and drug response data. Second, we use dynamic Bayesian networks to perform structure learning of context-specific signalling network topology from proteomic time-course data. We exploit a connection between variable selection and network structure learning to efficiently carry out exact inference. Existing biology is incorporated using informative network priors, weighted automatically by an empirical Bayes approach. The overall approach is computationally efficient and essentially free of user-set parameters. We show results from an empirical investigation, comparing the approach to several existing methods, and from an application to breast cancer cell line data. Hypotheses are generated regarding novel signalling links, some of which are validated by independent experiments. Third, we describe a network-based clustering approach for the discovery of cancer subtypes that differ in terms of subtype-specific signalling network structure. Model-based clustering is combined with penalised likelihood estimation of undirected graphical models to allow simultaneous learning of cluster assignments and cluster-specific network structure. Results are shown from an empirical investigation comparing several penalisation regimes, and an application to breast cancer proteomic data

    Integrating biological knowledge into variable selection : an empirical Bayes approach with an application in cancer biology

    Get PDF
    Background: An important question in the analysis of biochemical data is that of identifying subsets of molecular variables that may jointly influence a biological response. Statistical variable selection methods have been widely used for this purpose. In many settings, it may be important to incorporate ancillary biological information concerning the variables of interest. Pathway and network maps are one example of a source of such information. However, although ancillary information is increasingly available, it is not always clear how it should be used nor how it should be weighted in relation to primary data. Results: We put forward an approach in which biological knowledge is incorporated using informative prior distributions over variable subsets, with prior information selected and weighted in an automated, objective manner using an empirical Bayes formulation. We employ continuous, linear models with interaction terms and exploit biochemically-motivated sparsity constraints to permit exact inference. We show an example of priors for pathway- and network-based information and illustrate our proposed method on both synthetic response data and by an application to cancer drug response data. Comparisons are also made to alternative Bayesian and frequentist penalised-likelihood methods for incorporating network-based information. Conclusions: The empirical Bayes method proposed here can aid prior elicitation for Bayesian variable selection studies and help to guard against mis-specification of priors. Empirical Bayes, together with the proposed pathway-based priors, results in an approach with a competitive variable selection performance. In addition, the overall procedure is fast, deterministic, and has very few user-set parameters, yet is capable of capturing interplay between molecular players. The approach presented is general and readily applicable in any setting with multiple sources of biological prior knowledge

    Regulation of L1 expression and retrotransposition by melatonin and its receptor: implications for cancer risk associated with light exposure at night.

    Get PDF
    Expression of long interspersed element-1 (L1) is upregulated in many human malignancies. L1 can introduce genomic instability via insertional mutagenesis and DNA double-strand breaks, both of which may promote cancer. Light exposure at night, a recently recognized carcinogen, is associated with an increased risk of cancer in shift workers. We report that melatonin receptor 1 inhibits mobilization of L1 in cultured cells through downregulation of L1 mRNA and ORF1 protein. The addition of melatonin receptor antagonists abolishes the MT1 effect on retrotransposition in a dose-dependent manner. Furthermore, melatonin-rich, but not melatonin-poor, human blood collected at different times during the circadian cycle suppresses endogenous L1 mRNA during in situ perfusion of tissue-isolated xenografts of human cancer. Supplementation of human blood with exogenous melatonin or melatonin receptor antagonist during the in situ perfusion establishes a receptor-mediated action of melatonin on L1 expression. Combined tissue culture and in vivo data support that environmental light exposure of the host regulates expression of L1 elements in tumors. Our data imply that light-induced suppression of melatonin production in shift workers may increase L1-induced genomic instability in their genomes and suggest a possible connection between L1 activity and increased incidence of cancer associated with circadian disruption

    Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project

    Get PDF
    Climate and environments of the mid-Pliocene warm period (3.264 to 3.025 Ma) have been extensively studied. Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a coordinated multi-model and multi-model/data intercomparison. Whilst commonalities in model outputs for the Pliocene are clearly evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data/model comparison highlights that models potentially underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Furthermore, sensitivity tests exploring the known unknowns in modelling Pliocene climate specifically relevant to the high latitudes are essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses). Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS), support previous work suggesting that ESS is greater than Climate Sensitivity (CS), and suggest that the ratio of ESS to CS is between 1 and 2, with a "best" estimate of 1.5

    Obesity in pregnancy: a retrospective prevalence-based study on health service utilisation and costs on the NHS.

    Get PDF
    Objective: To estimate the direct healthcare cost of being overweight or obese throughout pregnancy to the National Health Service in Wales. Design: Retrospective prevalence-based study. Setting: Combined linked anonymised electronic datasets gathered on a cohort of women enrolled on the Growing Up in Wales: Environments for Healthy Living (EHL) study. Women were categorised into two groups: normal body mass index (BMI; n=260) and overweight/obese (BMI>25; n=224). Participants: 484 singleton pregnancies with available health service records and an antenatal BMI. Primary outcome measure: Total health service utilisation (comprising all general practitioner visits and prescribed medications, inpatient admissions and outpatient visits) and direct healthcare costs for providing these services in the year 2011–2012. Costs are calculated as cost of mother (no infant costs are included) and are related to health service usage throughout pregnancy and 2 months following delivery. Results: There was a strong association between healthcare usage cost and BMI ( p<0.001). Adjusting for maternal age, parity, ethnicity and comorbidity, mean total costs were 23% higher among overweight women (rate ratios (RR) 1.23, 95% CI 1.230 to 1.233) and 37% higher among obese women (RR 1.39, 95% CI 1.38 to 1.39) compared with women with normal weight. Adjusting for smoking, consumption of alcohol, or the presence of any comorbidities did not materially affect the results. The total mean cost estimates were £3546.3 for normal weight, £4244.4 for overweight and £4717.64 for obese women. Conclusions: Increased health service usage and healthcare costs during pregnancy are associated with increasing maternal BMI; this was apparent across all health services considered within this study. Interventions costing less than £1171.34 per person could be cost-effective if they reduce healthcare usage among obese pregnant women to levels equivalent to that of normal weight women

    Conservative management versus open reduction and internal fixation for mid-shaft clavicle fractures in adults - The Clavicle Trial: Study protocol for a multicentre randomized controlled trial

    Get PDF
    Background: Clavicle fractures account for around 4% of all fractures and up to 44% of fractures of the shoulder girdle. Fractures of the middle third (or mid-shaft) account for approximately 80% of all clavicle fractures. Management of this group of fractures is often challenging and the outcome can be unsatisfactory. In particular it is not clear whether surgery produces better outcomes than non-surgical management. Currently there is much variation in the use of surgery and a lack of good quality evidence to inform our decision.Methods/Design: We aim to undertake a multicentre randomised controlled trial evaluating the effectiveness and safety of conservative management versus open reduction and internal fixation for displaced mid-shaft clavicle fractures in adults. Surgical treatment will be performed using the Acumed clavicle fixation system. Conservative management will consist of immobilisation in a sling at the side in internal rotation for 6 weeks or until clinical or radiological union. We aim to recruit 300 patients. These patients will be followed-up for at least 9 months. The primary endpoint will be the rate of non-union at 3 months following treatment. Secondary endpoints will be limb function measured using the Constant-Murley Score and the Disabilities of the Arm, Shoulder and Hand (DASH) Score at 3 and 9 months post-operatively.Discussion: This article presents the protocol for a multicentre randomised controlled trial. It gives extensive details of, and the basis for, the chosen methods, and describes the key measures taken to avoid bias and to ensure validity.Trial Registration: United Kingdom Clinical Research Network ID: 8665. The date of registration of the trial is 07/09/2006. The date the first patient was recruited is 18/12/2007. © 2011 Longo et al; licensee BioMed Central Ltd

    Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance

    Get PDF
    Chemotherapy remains the standard of care for most cancers worldwide, however development of chemoresistance due to the presence of the drug-effluxing ATP binding cassette (ABC) transporters remains a significant problem. The development of safe and effective means to overcome chemoresistance is critical for achieving durable remissions in many cancer patients. We have investigated the energetic demands of ABC transporters in the context of the metabolic adaptations of chemoresistant cancer cells. Here we show that ABC transporters use mitochondrial-derived ATP as a source of energy to efflux drugs out of cancer cells. We further demonstrate that the loss of methylation-controlled J protein (MCJ) (also named DnaJC15), an endogenous negative regulator of mitochondrial respiration, in chemoresistant cancer cells boosts their ability to produce ATP from mitochondria and fuel ABC transporters. We have developed MCJ mimetics that can attenuate mitochondrial respiration and safely overcome chemoresistance in vitro and in vivo. Administration of MCJ mimetics in combination with standard chemotherapeutic drugs could therefore become an alternative strategy for treatment of multiple cancers

    Optimal health and economic impact of non-pharmaceutical intervention measures prior and post vaccination in England: a mathematical modelling study

    Get PDF
    AbstractBackgroundEven with good progress on vaccination, SARS-CoV-2 infections in the UK may continue to impose a high burden of disease and therefore pose substantial challenges for health policy decision makers. Stringent government-mandated physical distancing measures (lockdown) have been demonstrated to be epidemiologically effective, but can have both positive and negative economic consequences. The duration and frequency of any intervention policy could, in theory, could be optimised to maximise economic benefits while achieving substantial reductions in disease.MethodsHere we use a pre-existing SARS-CoV-2 transmission model to assess the health and economic implications of different strengths of control through time in order to identify optimal approaches to non-pharmaceutical intervention stringency in the UK, considering the role of vaccination in reducing the need for future physical distancing measures. The model is calibrated to the COVID-19 epidemic in England and we carry out retrospective analysis of the optimal timing of precautionary breaks in 2020 and the optimal relaxation policy from the January 2021 lockdown, considering the willingness to pay for health improvement.ResultsWe find that the precise timing and intensity of interventions is highly dependent upon the objective of control. As intervention measures are relaxed, we predict a resurgence in cases, but the optimal intervention policy can be established dependent upon the willingness to pay (WTP) per QALY loss avoided. Our results show that establishing an optimal level of control can result in a reduction in net monetary loss of billions of pounds, dependent upon the precise WTP value.ConclusionsIt is vital, as the UK emerges from lockdown, but continues to face an on-going pandemic, to accurately establish the overall health and economic costs when making policy decisions. We demonstrate how some of these can be quantified, employing mechanistic infectious disease transmission models to establish optimal levels of control for the ongoing COVID-19 pandemic.</jats:sec

    Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses

    Get PDF
    The forces that govern clonal selection during the genesis and maintenance of specific T cell responses are complex, but amenable to decryption by interrogation of constituent clonotypes within the antigen-experienced T cell pools. Here, we used point-mutated peptide–major histocompatibility complex class I (pMHCI) antigens, unbiased TCRB gene usage analysis, and polychromatic flow cytometry to probe directly ex vivo the clonal architecture of antigen-specific CD8+ T cell populations under conditions of persistent exposure to structurally stable virus-derived epitopes. During chronic infection with cytomegalovirus and Epstein-Barr virus, CD8+ T cell responses to immunodominant viral antigens were oligoclonal, highly skewed, and exhibited diverse clonotypic configurations; TCRB CDR3 sequence analysis indicated positive selection at the protein level. Dominant clonotypes demonstrated high intrinsic antigen avidity, defined strictly as a physical parameter, and were preferentially driven toward terminal differentiation in phenotypically heterogeneous populations. In contrast, subdominant clonotypes were characterized by lower intrinsic avidities and proportionately greater dependency on the pMHCI–CD8 interaction for antigen uptake and functional sensitivity. These findings provide evidence that interclonal competition for antigen operates in human T cell populations, while preferential CD8 coreceptor compensation mitigates this process to maintain clonotypic diversity. Vaccine strategies that reconstruct these biological processes could generate T cell populations that mediate optimal delivery of antiviral effector function

    Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses

    Get PDF
    The forces that govern clonal selection during the genesis and maintenance of specific T cell responses are complex, but amenable to decryption by interrogation of constituent clonotypes within the antigen-experienced T cell pools. Here, we used point-mutated peptide–major histocompatibility complex class I (pMHCI) antigens, unbiased TCRB gene usage analysis, and polychromatic flow cytometry to probe directly ex vivo the clonal architecture of antigen-specific CD8+ T cell populations under conditions of persistent exposure to structurally stable virus-derived epitopes. During chronic infection with cytomegalovirus and Epstein-Barr virus, CD8+ T cell responses to immunodominant viral antigens were oligoclonal, highly skewed, and exhibited diverse clonotypic configurations; TCRB CDR3 sequence analysis indicated positive selection at the protein level. Dominant clonotypes demonstrated high intrinsic antigen avidity, defined strictly as a physical parameter, and were preferentially driven toward terminal differentiation in phenotypically heterogeneous populations. In contrast, subdominant clonotypes were characterized by lower intrinsic avidities and proportionately greater dependency on the pMHCI–CD8 interaction for antigen uptake and functional sensitivity. These findings provide evidence that interclonal competition for antigen operates in human T cell populations, while preferential CD8 coreceptor compensation mitigates this process to maintain clonotypic diversity. Vaccine strategies that reconstruct these biological processes could generate T cell populations that mediate optimal delivery of antiviral effector function
    corecore